

AP&T's experience deploying and maintaining fixed wireless service in rural Alaska.

Fixed Wireless

Alaska Power & Telephone

- Established in Alaska 1957.
- We are employee-owned energy utility and telecommunications provider with approximately 140 employee/owners.
- We are traded over-the counter "APTL"

Energy

- We operate microgrids in rural and remote areas of Alaska.
- Distribution, Transmission and Generation
- We plan, construct and operate all aspects of an electrical system. 80%+ of our energy comes from renewable resources primarily hydro.
- Most recent project was Hillangaay on Price of Wales Island.
- https://vimeo.com/363431514/cd873345b0

Telecom

- Local exchange carrier providing voice services. (LEC)
- Broadband providing service over fiber, copper and wireless in the last mile.
- We have constructed middle mile fiber terrestrially and submerged. Our newest project scheduled for completion in 2022 2023 is SEALink.

Licensed and Unlicensed Spectrum

- · Licensed spectrum
 - · Higher power radio
 - Less interference
 - Typically fewer equipment manufacturers
- Unlicensed spectrum
 - · Lower power radios
 - Often has more risk of interference
 - Typically has a wide range of equipment manufacturers

Wide Range of Frequencies

- 900MHz Unlicensed
- 2.4GHz Unlicensed
- 2.5GHz Licensed (Rural Tribal Spectrum and future commercial service)
- 3GHz Licensed and Unlicensed (Citizens Broadband Radio Service (CBRS))
- 5GHz Unlicensed
- LTE Licensed

Point to Multipoint

- One or more Access Points communicating with many subscriber units
- Not point to point (microwave)

· Primary use case is last mile

Advantages and Potential Drawbacks of Fixed Wireless

Advantages

- Deployment is usually cost effective
 - Copper
 - Fiber
 - Satellite
- Typically faster to deploy than copper or fiber

Potential Drawbacks

- Maintenance costs can be high
 - Radio Frequency bandwidth is a finite resource
 - First customer may have great service, but by the time the 50th customer is added service may be very poor
 - Adding additional Access Points may create interference
 - Finding and identifying issues can be time consuming
 - Finding and mitigating interference can be an extremely frustrating experience
- Fixed Wireless networks historically have a shorter lifespan than facility based networks
- · Bandwidth is limited
- Some customers may have good service, others may not

Southeast Alaska

- Terrain is a tremendous challenge
 - Mountains, Trees, and lots of Rain
 - These conditions made service extremely challenging
- Sites Deployed between 2006 and 2008
 - Kasaan
 - Klawock (shutdown in 2020)
 - Thorne Bay (shutdown in 2021)

Northway Alaska

- Interior Alaska terrain is still a challenge, but much better
- Cold

Northway, Alaska

Frequency

- 900MHz
- Better propagation
- Limited Frequency (902MHz 928MHz)

Equipment

- Waverider Original
 - Limited to 8M per access point
 - Indoor Radio Units at each customer's home
- Cambium Today
 - 54M/13M per access point (advertised), 25M/7.5M more common
 - Outdoor Radio Units at each customer's home
 - Longest shot: ~9.2 miles
 - Best connection: 39M/10M
 - Worst connection: 13M/4M
 - Connections per Access Point: 6-34
 - Long Distance and poor signal connections reduce the overall effectiveness of an Access Point

Customer Equipment

Yagi Antenna Mounted on the customer house

Gain: 12db

Dimensions: 43.7" x 7.1" x 7"

Subscriber unit mounted to Antenna

Dimensions: 11" tall x 3.5"

wide x 2" deep

60 Degree Sector Antenna

Gain: 13db

Dimensions: 34.6" tall x 11.3"

wide x 5.2" deep

Access Point mounted to Antenna

Dimensions: 10.3" tall x 5.3"

wide x 3.3" deep

Access Point Site Selection

- Need Elevation!
- Maximize access to customers
- Site limitation
 - Land availability
 - Tower Height

Customer Installations

- Finding a place to mount the antenna on the house that has a path to the Access Point
- Protecting from the elements (snow and ice)
- Metal roofs can create problems (interference, ice shedding)

- Radio Frequency (RF) Signal Levels
- Interference
 - Modulation Levels
- Frequency availability
- Access Point throughput
- Not enough Access Points
- New customer location causing issues with an existing customer
- Truck Rolls!

Verify all Marketing Claims

Start with a good RF Design

- Keep growth in mind
- Select the Frequency or Frequencies that will provide the best service
- Select Access Point Sites Carefully

Select good equipment

• Rugged enough to withstand Alaska environment

Find good installers

- Understand how to protect from weather
- Understand the technology enough to find the best locations at customer's house
- Plan for on-going troubleshooting and system optimization